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Abstract

Certain very slow quasi-static tensile test results by Soviet investigators show that the resulting plastic deformation
occurs as a wave process. An analysis of these data reveals a possible connection with the de Broglie momentum—
wavelength relation, Vp = i/(m2). A link seems to exist between a macroscopic observable (wavelength) and the ve-
locity (moving clamp speed) of atoms on a microscopic scale. Certain strain wave data from creep tests of aluminum
were modeled via the running wave quantum relation for a particle (atom) in a one-dimensional box or line segment
equal to the specimen length. These results have important implications with regard to plastic deformation theory.
Published by Elsevier Science Ltd.
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1. Introduction

Over a decade has passed since Panin et al. (1988, 1989) first noticed and called attention to anomalous
strain and rotation waves that were created during extremely slow motion tensile tests of metallic specimen
undergoing plastic deformation. Recent reviews of similar test results for different metallic alloys are
contained in Zuev et al. (1994, 1995) and Zuev and Danilov (1997b, 1998). “Autowaves” and/or “self-
organization” of an “active medium” are terms used in these references to describe the mysterious strain
waves observed via speckle holography interferometry instrumentation.

Zueyv et al. (1995) state that, in nearly all cases, the wavelength (1) magnitude is essentially 5-10 mm and
the wave propagation velocity (Vpy) is of the order of 1075-10~* ms~!. Most of the tensile testing ap-
parently utilized an Instron-1185 machine with a moving clamp velocity (Vyc) of approximately 1.6 x 10~°
ms~'. The velocity of the atoms in the test specimen should range from 0 to Vyc.

The purpose of the present article is to suggest that there is some correlation with these experimentally
observed wavelengths (1) and the moving clamp velocity (Vyc) via the de Broglie momentum-wavelength
relation that is
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Vo = h/(mA). (1)

In this famous relation, the symbols are defined as follows: / is the Planck’s constant, 6.6262 x 1072’
gcm?s~!, m, mass of particle or atom (g), 4, wavelength (cm), Vp, de Broglie velocity, velocity of particle or
atom (cms™!).

When A is the experimentally observed wavelength and m, the mass of an atom (or m,y, the average
mass of an atom) in the test specimen, then Vp is of the same order of magnitude as Vyc, the moving clamp
velocity. As noted above, the velocity of atoms in the test specimen should be of the same order of mag-
nitude as V. Quantitative comparative results are presented in Section 3.

Thus there appears to be a connection between Eq. (1) that holds for all particles (Moore, 1962; Daniels
and Alberty, 1966) and the experimentally observed wave phenomena of very low speed tensile tests. That
is, the observed wave phenomena are possibly the manifestation of a quantum effect (Eq. (1)) in addition to
other possible material effects.

2. Background information
2.1. Quasi-static tensile tests

As noted in Section 1, Soviet investigators have performed a series of very slow speed tensile tests of
various materials that have been deformed just past the elastic yield point and into the plastic regime. An
Instron-1185 testing machine was employed with one end of the material specimen clamped and held fixed
while the other end of the specimen was being pulled by a moving clamp whose velocity (Vyc) was
nominally 100 pmm™" or 1.67 x 107¢ ms~! (Frolov et al., 1990; Danilov et al., 1991b; Zuev et al., 1991).

A rather sophisticated procedure was employed to extract strain information from the specimen in the
standard tensile test arrangements described above. Holographic interferometry as discussed by Zuev et al.
(1990) Panin et al. (1988), Frolov et al. (1990), and Zuev et al. (1997), was utilized to extract longitudinal (u)
and transverse (v) particle displacement information from the specimen during the test. Numerical differ-
entiation of these displacements with respect to the longitudinal (x) and transverse (y) directions yields
Ou/0x,0u/0y,0v/0x, and Ov/0y. The longitudinal elongation strain is defined as &, = Ou/Ox and the
transverse narrowing strain is ¢,, = 0v/0y. The shear deformation is ¢, = ¢, = (0v/0x + 0u/0y)/2 and the
rotation is defined as w, = (0v/0x — Ou/0y)/2. These definitions are used in all cited documents containing
experimental data.

When these strains (&, €, &) or rotations (w.) are plotted as a function of the longitudinal position (x)
along the specimen, the resulting curves are oscillatory with a wavelength of several millimeters. The
propagation velocity (Vpy) of these waves is on the order of 107°-10~* ms~'. This is at least an order of
magnitude greater than the moving clamp velocity, Vyc (Danilov et al., 1990).

The occurrence of these plastic waves was mysterious and initially unexpected such that Panin et al.
(1989) candidly asks why do they originate and how do they propagate. Several years later, these phe-
nomena are still the source of considerable speculative discussion and analysis (Zuev and Danilov, 1997a,b;
1998; Zuev et al., 1997).

2.2. The particle momentum wave concept

Soon after their discovery, Panin (1990) cites sources of experimental evidence that demonstrate beyond
doubt the wave nature of plastic deformation in quasi-statically stressed solids. This observation is com-
mensurate with the particle momentum wave (PMW) concept of nonelastic motion in solids as suggested by
Fitzgerald (1966a,b).
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The basic PMW postulates are

—_—

. The macroscopic deformation of solids under load is the integrated result of “free-field” atom motion.

2. These atoms travel through the solid as PMW subject to the rules of wave motion and are not governed
exclusively by material structural characteristics.

3. The wavelength, 4, of these PMW is determined by the momentum (mV) via the de Broglie relation, Eq.

(D).

Item 3 is a very important constraint which can apparently manifest itself enough to be evident in certain
macroscopic test data (Billingsley, 1998a,b). Some examples of this will be briefly described. They are

1. Resonance frequencies in structural compliance testing.
2. Acoustic emission (sounds) during structural testing.
3. Hugoniot elastic limit (HEL) particle velocity decay to the V; = h/(2md,) level.

Several references, documenting the first successful calculations/comparisons of a macroscopic observ-
able quantity, involving Planck’s constant (%), during ordinary mechanical testing are cited by Billingsley
(1998a). Resonance frequencies occurring during vibrational compliance testing of aluminum, stretched
natural rubber (carbon atoms) and human cancellous (degenerate) bone segments (calcium and phos-
phorous atoms) could only be computed via the following relation for standing waves in a one-dimensional
box or line segment:

h :
Vi = (W)nz standing waves, (2)

where n =1,2,3,...,N/9 and s, the segment length, Nd ~ 10~* cm (Fitzgerald, 1966a: pp. 38-42). The
resonance frequencies from the bone tests were so sensitive to the correct mass of the calcium atoms that the
mass for a calcium isotope produced better agreement with certain data. Thus, a quantum effect, usually
associated with microscopic events, was revealed during macroscopic tests.

Note, that if Eq. (2) is multiplied by 4, it is equivalent to the energy of a particle in a one-dimensional
box or line segment which comes from a text book example of a solution for the Schroedinger wave
equation as given in Daniels and Alberty (1966), Wark (1977), and Lowe (1993).

Fitzgerald (1966a, Chapter II) cites numerous references containing experimental data for acoustic
emission from a variety of stressed materials (steel, aluminum, zinc, copper, lead, sodium chloride, and
wood). He considers this as evidence of PMW where both standing and running waves can occur simul-
taneously. Discrete frequencies for the standing waves are given by Eq. (2), while the companion relation
for running waves is Eq. (3) as written below with the same notation

Vi = (%)nz running waves. (3)
Egs. (2) and (3) are for low frequency modes and are derived from more general relations (Egs. (2.26) and
(2.27), respectively) in Fitzgerald (1966a, Chapter II). Note that s = Nd is the segment length or long-range
periodicity which depends on specimen size, grain size (GS), etc. and may be difficult to determine precisely.
However, in many cases, as cited by Fitzgerald (1966a, Chapter II), s is on the order of 10~* cm. In Section
3.1.2, Eq. (3) is applied where s = L = 50 mm = 5 cm, which is the specimen length.

Billingsley (1998a,b) provided comparative evidence to indicate that when 2 was less than 2d,, where d, is
the shortest (or average) distance between atoms, then the HEL precursor wave particle velocity (Up,,, )
decays with travel distance (x) until U, = Vi = h/(2md,). This is because J. cannot be less than 2d, or an
unstable situation develops. This point is strongly emphasized by Fitzgerald (1966a,b). The wavelengths (via
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Eq. (1)) in the HEL tests were on the order of 5A =5 x 10~ mm =5 x 1078 cm = 5 x 1071 m. These
wavelengths are well within the microscopic regime but apparently influence observations of Uy, on the
macroscopic level. That is, when U, is greater than V), it decays asymptotically with travel distance to
the V) level. When U, is greater than V), then 4 is less than 2d,. When U, is less then V), then U,
does not decay with travel distance because A (via Eq. (1)) is greater than 2d;, which is a stable situation.
This is another example where a microscopic quantum effect has apparently influenced macroscopic test
results.

Balankin (1989) and Cherepanov et al. (1995) also mentioned a connection between the de Broglie re-
lation and the HEL. Some of their ideas may also be appropriate to the subject matter (quasi-static tensile
tests, QSTT data) of the present article.

As noted in Section 1, the wavelengths revealed from the quasi-static test data were on the order of 5-10
mm (5-10 x 107 A = 0.5-1.0 cm = 5-10 x 1073 m). Thus they are about seven orders of magnitude larger
than the lengths associated with the HEL phenomena. In the HEL tests, the relatively short wavelengths
(<2d,) created an unstable situation within the test specimen.

On the other hand, for the QSTT, the very low particle velocity (= V) and the corresponding long
wavelengths (via Eq. (1)) may also create unstable situations. The required wavelengths commensurate with
particle velocities similar to Vyc via Eq. (1), may be incompatible with specimen size limitations, grain
boundaries, crack locations, and voids within the specimen. If Eq. (1) cannot be locally satisfied within the
specimen for some reason, then an unstable situation will exist. The more inhomogeneous a specimen is, the
more likely that satisfaction of Eq. (1) will be inhibited. Restraints on the wavelength may dictate changes
in particle velocity in order to satisfy Eq. (1). The observed rotations, w., may be a result of this instability.
It is suggested that the requirement to satisfy Eq. (1) (or Egs. (2) or (3)) may be the reason for the sur-
prisingly long wavelengths observed for certain strain waves which seem to be inexplicable otherwise.
Because the specimen all have rectangular cross sections, the appropriate relation for standing wave fre-
quencies may be

W2 e
V:%<§+ﬁ+§ ’ @
X y z

where n,, n,, n. are the independent quantum numbers (1, 2, 3, 4, etc.) in each x, y, z direction. L., L,, and L.
are the length, width, and thickness of the specimen, respectively. Eq. (4) comes directly from a textbook
(Lowe, 1993) solution of the Schroedinger equation for a rectangular box. Even when L,, L, and L. are set
or fixed for a given specimen, numerous discrete values of v are possible via n,, n,, and n, independent
combinations. The wavelengths will, of course, be related to specimen dimensions (or GS) which is com-
mensurate with results from the QSTT data.

Both standing and running strain waves have been observed in the QSTT data by Zuev et al. (1995) and
Zuev and Danilov (1997b) which is compatible with remarks by Fitzgerald (1996a, Chapter II) as men-
tioned previously.

Quantitative comparisons of the QSTT strain wavelength computations via Eqgs. (1) and (3) are con-
tained in Section 3.

3. Comparative analysis for five metallic materials

Table 1 provides a summary of the experimental data that were gleaned from the cited references.
Wavelength, A, data from ¢, results were preferred because it involved only the displacement along the
x-axis in the direction of the moving clamp velocity, Vuc.



Table 1

QSTT results for active materials

Materials References Specimen size (mm) GS (mm) Strain rate, Tare x 107° Voy x 1073 / (mm) Remarks
L w T Ex107°6™) [ g msty msT)
Fe + 3%Si Panin et al. 80 10 0.2 > 10 2 1.6 - 5+£2 A= GSR2~ W2
(1998)
Panin et al. - - - > 10 3 - - 542 A= GS/2
(1989)
Panin (1990) - - - 10 - 1.7 1.5 5+£2 A=0.6 GS
Frolov et al. 50 10 0.3 10 3 1.7 1.5 5+2 A= GSR2~ W2
(1990)
50 10 1.5
Fe4NigBag Danilov et al., 30 5 0.03 - 5 1.5 3.3 4 (e,) (Fig. 1) A=08 W
1990
30 10 0.03 - 5 1.5 8 (ey) (Fig. 2) A=08 W
30 10 0.03 - 5 1.5 15 (e) (Fig. 4) A=L/2
Frolov et al., 30 5 0.025 - - 1.7 8.0
1990
30 10 0.025 - -
FegsBis Danilov et al. 50 0.024 - 33 1.8 6 18 (&) Both loading
1991b g = 0.6% } and unloading
to
006 0.030 - 15 7 () Both loading
g =1.2% } and unloading
CugyNijoSng Zuev et al. 25 5 1 - 6.7 1.675 (6.5+0.3) 3.5 (&,) or 4.0 Easy glide stage
(1994) (Fig. 1)
(7.5+£0.4) 6.0 (&) (Fig.  Linear hardening stage
1) 8.0 (Text)
Aluminum Frolov et al. 50 10 0.3 10 - 1.66 - 20-24 (&) Fig. 7
(1990) ) }Coarse grain
50 10 1.5 (coarse) 5-10 (w.) Fig. 7
50 10 1.5 0.04 (fine) - 1.66 - 5 (&) Fig. 8
50 10 0.3 0.03 (fine 4 (o, Fig. 8 .
(fine) s E%; Fig. 8 Fine grain
3 () Fig. 8
Danilov et al. 50 10 1.5 0.04 34 1.7 1.5 5.55 A=13.64+2.5 Ln (GS)
(1991a) 1.00 13.6 Eq. (4) for &,, wave
lengths in Danilov et al.
(1991a)
10.00 19.35

PECHITTH (1007) §E So4monyg puv spijog fo jpunof puoipuiapuf | Layssuyig d
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However, / from &,, and w, results were also used for comparative purposes, particularly if ¢,, data were
not given (plotted or discussed). ¢,,, &.,, and w, are functions of the displacements (v) in the lateral direction,
perpendicular to Vyc. So their wavelengths may be more dependent on the specimen width (W) or thick-
ness (T) than g, wavelengths. Commensurate with this line of thought, ¢,, wavelengths may be more de-
pendent on the specimen length.

The Soviet researchers also noticed some strain wavelength dependence on grain size GS. This is
commensurate with standing or running waves being contained in (or confined to) a box (grain bound-
aries).

In references where Vyc, é (overall strain rate), and L (specimen length) were all given, it was found that
they agreed with the following relation:

Vage = L - &. (5)

This implies that

AL
p=m =2 gross or total overall strain, (6)
L L
ALN1 & U .
&= i = (E) = % = Tp = gross or total overall strain rate, (7)

u = displacement of a point in the x-direction,

U, = 1t = gross or total overall particle velocity = Hyc.

At

So Vyc is, at least, a measure of particle (atom) velocity, U,. Consequently, V'p, as computed from Eq.
(1) from the experimental strain or rotation wavelengths, is compared to Vyc. For references where Vyc is
not given, but ¢ and L are given, then Vyc is computed from Eq. (5). Wavelength (1) data, from references
that did not state Vyc or provide enough information(¢ and L) to compute it, were not utilized in the
quantitative comparisons contained in Table 2.

Zuev et al. (1991, Fig. 4) presents analytical/calculated results for the distribution of ¢,, along the x-axis
of a specimen undergoing QSTT. Additional details and results (such as « and U, distributions) would be of
considerable interest.

3.1. Aluminum

3.1.1. Quasi-static tensile tests data

Polycrystalline fine grain and coarse grain aluminum was tested via the QSTT technique with speckle
holography instrumentation and the results were reported in Frolov et al. (1990); Danilov et al. (1991a),
and Zuev et al. (1995). Specimen sizes, GS, and wavelengths from these sources are listed in Table 1. Note
that there is a dependence of wavelength on GS; however, the wavelength may also be influenced by the
specimen size to some extent via Eqgs. (2) and (3), or (4), or the running wave counterpart of Eq. (4).

Vb was computed for a range of values corresponding to the experimental wavelengths from Frolov et al.
(1990) and Danilov et al. (1991a). V' either brackets Vyc, or is close enough to Vyc, such that Vp and Vyc
are the same order of magnitude.

3.1.2. Creep test data
Information contained in Danilov et al. (1991¢) documents creep tests performed on macrocrystalline
(10 mm GS) 99.7% pure aluminum specimen where speckle holography was employed to acquire strain



Table 2

de Broglie velocity comparison with QSTT results

Materials Experimental Vo = h/(mi) Remarks
References e x 107° / (mm) Toy x 107 (ms™') mx 102 g /. (mm) Vo x 1070
(ms™") (ms™")
Fe + 3%Si Panin (1990) 1.7 542 1.5 9.273 (= mg) 3.0 2.382
4.0 1.786 Vb =~ Vme
Frolov et al. 1.67 542 1.5 5.0 1.429 Vb ~ Vme
(1990) 6.0 1.141
7.0 1.021
F€40Ni40B20 Danilov et al. 1.53 4-8 33 7.967 (: mAv) 4.0 2.08
(1990) 15 8.0 1.04 Vp brackets Vyc
15.0 0.555
FegsBis Danilov et al. 1.8 7-18 6-15 8.226 (= mav) 7.0 1.15 Vb = 64% Vuce
(1991b) 18.0 0.49 Vo = 25% Vuc
CugyNipSng Zuev et al. (1994) 1.675 3.5-8.0 7.5 11.02 (= may) 3.5 1.718 Vb = Vmc
4.0 1.503 VD ~ VMC
6.0 1.002 Vo ~ 0.60% Vyc
8.0 0.750 Vb =~ 0.44% Ve
Aluminum Frolov et al. 1.67 4-25 - 4.48 (= mpL) 4 3.697
(1990) 8 1.849 Voo ~ Vic
9 1.643 Vb = Vmc
17 0.870 Vo ~ Vac/2
25 0.592
Danilov et al. 1.7 5.55 1.5 5.55 2.665 Vp Brackets Vyc
(1991a) 13.60 13.60 1.088
19.35 19.35 0.764

PECHITTH (1007) §E So4monyg puv spijog fo jpunof puoipuiapuf | Layssuyig d
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displacement data. These creep tests differed from the QSTT procedure in that constant tensile load (or
stress) was applied to a specimen instead of a constant moving clamp velocity. The specimen working size
was L = 50 mm, W = 10 mm, and 7 = 1.5 mm.

In the creep tests, the tensile load (or stress) above the elastic limit was varied from one test specimen to
another so that the strain rate, &, also varied. Thus, a variety of different strain rates were achieved during
these tests that were conducted at 300 K (27°C or 80.6°F). Analysis of the displacement data revealed the
wave nature of the strain (¢,,) and rotation (w,) similar to what had been observed in QSTT data. The wave
like appearance of these data is displayed in Fig. 1 of Danilov et al. (1991c).

Danilov et al. (1991c, Table 1) provided a summary of their results which lists, 4, 0, and Vpy for a variety
of strain rates, ¢ where ¢ is constant during the steady state creep stage. Note that

1
0= o= period of one wave cycle (s) (8)

and according to Danilov et al. (1991c)

A . .
Voy = 5= Av = wave propagation velocity, 9)
where v is the wave frequency (s7).

An overall gross value of the particle velocity, U,, was computed via Eq. (7), so that
Uy=L-é (10)

Values of the wavelengths, recorded in Table 1 of Danilov, et al. (1991c¢) ranged from (5+ 1) to (7 1)
mm. Thus essentially, 2 was not affected as the strain or creep rate, & was varied from 3.16 x 107¢ to
20.62 x 1076 s71,

These wavelengths are somewhat smaller than those (10 or 11 mm) that can be obtained from measuring
Ax distances between “peak-to-peak” &,, and w. amplitudes in Fig. 1(a) and (b), respectively, of Danilov
et al. (1991c). However, their magnitudes are still on the order of GS (GS ~ 10 mm) and specimen width
(W = 10 mm). In fact, these ¢,, and w, wavelengths may be related to the specimen length (L = 50 mm) as
pointed out in the following quantum related analysis.

Exploratory computations for running waves in aluminum were made via Eq. (3) with the segment
lengths, s, equal to L, the specimen length in the x (tensile load) direction. According to Lowe (1993, p. 32),
the allowed wavelengths are

/l:é, (11)

n

where 7 is the same integer as defined for Eq. (2) and n was chosen so that A was equal to, or close to, certain
values of 4 (4, 5, 6, and 7 mm) measured by Danilov et al. (1991c). When Eq. (11) is multiplied by Eq. (3), in
accordance with Eq. (9), the result for the wave propagation velocity, Vpy, is

oy = 2. (12)

Also, when Eq. (11) for 4 is substituted in to Eq. (1), the de Broglie particle velocity is

i

P s (13)
Vs
78 :%. (14)

Thus, there is a simple theoretical relation between Vp and Vpy for running waves in a line segment.
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Table 3 lists values of 4, v, (or 0) and Vpy data from the six different creep experiments (different é) and
also lists for comparative purposes, values of 4, v, (or 0) and Vpy from Egs. (11), (3), (8), and (12), re-
spectively. For experiments 1-4, with s = L, n could be selected such that:

(a) 4 calculated ~ /4 (experimental),
(b) v calculated ~ v (experimental),
(c) Vpy calculated =~ Vpy (experimental).

Note that when A~ 5 mm (r = 20), the comparison is remarkably close (less than 4.0% difference in 6 and
Vpv). The fact that Vpy, computed via Eq. (12), compares reasonably well with the experimental data is
important since it provides some rationale for the magnitude of the observed values of Vpy (for the creep
data and perhaps even for QSTT data as well) and the long wavelengths also.

For experiments 5 and 6, note that in order for 0 (calculated) to compare favorably with 6 (experi-
mental), then 4 (calculated ~3 mm) must be about one-half /. (experimental ~6 mm). For all tests, dif-
ferences by as much as a factor of 10 or more exist between U, = L - ¢ (experiment) and V'p computed via
Eq. (13). So U, =L -¢ (experimental) may not apply to the creep test data. The Soviet investigators
(Danilov et al., 1991c¢) did not use it in their data analysis.

Section 4 contains additional remarks about these comparison discrepancies.

3.2. Ferrosilicon (Fe + 3%Si)

QSTT results for a ferrosilicon alloy (Fe + 3%Si) are contained in Panin et al. (1988,1989) and Frolov
et al. (1990). Table 1 provides pertinent information acquired from the cited references. Table 2 shows that
the de Broglie velocities V' (Eq. (1)) computed for strain (e,,) wavelengths from 3 to 7 mm are comparable
to Vmc magnitudes.

Frolov et al. (1990) evaluated the period, 0 =~ 300 s, for the ferrosilicon waves, and with the experimental
wavelengths, the wave propagation velocity, ¥py =~ 1.5 x 107> ms~! was then computed via Eq. (9). Vpy is
about an order of magnitude larger than V¢ which is on the order of the particle velocity.

Some exploratory computations were performed via the running wave relation, Eq. (3), for the ferro-
silicon data. However, a consistent match with 4, 6 (or v) and Vpy was not obtained.

3.3. Iron—nickel-boron alloy

Amorphous alloy FesNigB,y QSTT plastic strain (e, &,) and rotation (w,) data are presented and
described primarily in Danilov et al. (1990) and are mentioned in Frolov et al. (1991b). Certain information
about the specimen and test results is given in Table 1. Note that the specimen thickness, 7, is 30
pm =30 x 107® m =30 x 107% x 10> mm = 30 x 107> mm = 0.030 mm. Fe4NisB, data discussed in
Danilov et al. (1991b) are the same data that are the subject of Danilov et al. (1990) where the following
wavelength data were found.

The wavelength of shear strain, ¢,,, data is about 4 mm for a specimen width of 5 mm (Fig. 1) and is
about 8§ mm (Fig. 2) for a specimen width of 10 mm. That is for ¢,,, the wavelength, 4, is about 0.8 W.
However, for ¢, a wavelength of 15 mm can be obtained from Fig. 4 for a 10 mm wide specimen. This
wavelength is 0.5 L where L is the length of the specimen (30 mm). These wavelengths (4, 8, and 15 mm) are
substituted into Eq. (1) to compute an associated Vp. These values are given in Table 2 that indicates they
bracket Vyc and are the same order of magnitude.

The experimental investigators (Danilov et al. 1990) determined an oscillation period, 0 =~ 120 s, and
combined this with the observed wavelength (1~ 4 mm) to compute the wave propagation velocity
(v =~ 3.3 x 107> ms~!). Again, Vpy is about an order of magnitude larger than Vyc.



Table 3

Comparison of aluminum creep test data with exploratory computational results
Source  Item Units Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6
Exp. é 57! 3.16 x 107° 4.50 x 107¢ 4.60 x 10~¢ 9.79 x 10~¢ 13.67 x 107¢ 20.62 x 107°
Exp. A = wave length mm 6+1 5+1 7+1 6+1 6+1 6+1
Cal. A=2s/n 6.667 (n=15) 5.00 (n =20) 6.25 (n=16) 5.00 (n = 20) 3.703 (n =27) 3.03 (n=33)

s =L =150 mm

Exp. 0 cycle period s 1450 864 1270 820 450 300
Cal. 0=1/v s 1502.47 845.13 1320.56 845.13 463.72 310.43
Exp. v=1/0 s 6.8966 x 107* 11.57 x 107* 7.874 x 1074 12.20 x 107* 22.22 x 107* 33.33x 107*
Cal. v = hn?/2ms? 57! 6.6557 x 10~* 11.8325 x 1074 7.5727 x 107* 11.8325 x 1074 21.5647 x 1074 322137 x 1074
Exp. Vov =2/0=Av ms~! 4.8 x 107° 5.7 x 107¢ 5.6 x 107¢ 7.3 x 10°¢ 13.3 x 10°¢ 20.0 x 10=¢
Cal Vov = hn/ms ms~! 4.4374 x 107° 5.916 x 10°¢ 4.7324 x 107° 5.916 x 107° 7.984 x 107° 9.7608 x 10-¢
Exp. U,=L-¢ ms~! 0.158 x 10=° 0.225 x 10~¢ 0.230 x 1076 0.490 x 107° 0.684 x 107° 1.031 x 10~°
Cal. Vo = hn/2ms ms™! 2.2185 x 107¢ 2.9581 x 10~¢ 2.3665 x 107¢ 2.9581 x 107¢ 3.9942 x 10°¢ 4.8814 x 107°

Exp.= Experimental from Danilov et al. (1991c); Cal. = Calculated.

0gcy

PECHITTF (1007) §E Somonys puv spios fo jpuinor puoyvuiopuf | LaisSujjig “d '
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Some exploratory computations with Eq. (3) for running waves were made but a consistent match with
4, 0 (or v), and Vpy was not accomplished.

3.4. Iron—boron alloy

QSTT results for another amorphous iron alloy (FegsB14) are given in Danilov et al. (1991b). Table 1 lists
pertinent information about the specimen, test conditions, and test results. Data for wavelengths of ¢, were
given as 18 mm at a total strain, & = 0.6%, and were the same for both loading and unloading. When the
total strain, & = 12%, the wavelength was 7 mm for both loading and unloading. The corresponding Vp via
Eq. (1) are from 25 to 64% of Vyc as shown in Table 2.

3.5. Copper—nickel-tin alloy

Face centered single crystals (FCSC) of a copper—nickel-tin alloy (CugsN¢Sng) were subjected to QSTT
with speckle interferometry instrumentation. The test results are reported in Zuev et al. (1994) and certain
portions of this information are listed in Table 1.

During this test, initially, a plastic strain wave, &,,, that is about 6-8 mm wide traveled from the fixed end
of the specimen to the moving end held by the moving clamp. This was called the “stage of easy glide.” Its
propagation velocity, Vpy, was (6.540.3) x 107> ms~! or (0.065 + 0.003) mms~!. Near ¢ = 150 s, oscil-
latory ¢,, waves of this stage had wavelengths of 3.5-4.0 mm as measured from Fig. 1 in the reference cited
above. The corresponding de Broglie velocities, Vp, from Eq. (1) are 1.718 x 107 and 1.503 x 10~ ® ms~!,
respectively. They bracket the moving clamp velocity (Vyc =~ 1.675 x 107 ms~!) and are remarkably close
to it. Perhaps this is because, at this time (¢ =~ 150 s), the wave front position (x =~ 20 mm) is close to the
location of the moving clamp (x ~ 25 mm) where particle velocities, U, in the specimen should equal Vyc.

The magnitude of Vp corresponding to the initially observed wavelengths of 6-8 mm are 1.002 x 10~¢
ms~' (0.60Vyc) and 0.750 x 107° ms~! (0.44 V), respectively, as given in Table 2. These early values for
Vb (or U,) seem reasonable near the fixed end of the specimen where U, = 0.0.

When the “easy glide” plastic strain, ¢,,, wave front reached the specimen end at the moving clamp, it
reversed direction and propagated toward the end held by the fixed clamp. This was called the “strain
hardening stage™ and it traveled with a velocity, Vpy, equal to (7.5 +0.4) x 107> ms~!. These ¢, waves,
called “‘seats of plastic flow,” were shaped like the positive part of a sine wave plus essentially a flat portion
near zero magnitude where the negative part of a sinusoidal wave would ordinarily be found. This is called
a rectified half sine wave in Lathi (1965), p. 193, and 8 mm is the distance that separates these traveling
waves. Considering 8 mm to be the wavelength yields Vp, via Eq. (1), to be 0.750 x 107 ms~! that is 44%
of VMC-

This rectified half sine wave shape of the “strain hardening stage” &, waves may be caused by inter-
ference or beating phenomena of two waves (easy glide waves and its reflection from the moving clamp
location). This type of phenomena could also create standing waves such as shown for CugsNi;pSne in Fig.
4(a) of Zuev et al. (1997b) and for aluminum single crystals in Fig. 5 of Zuev et al. (1995).

4. Conclusions

Quantitative exploratory computations with the de Broglie momentum-wavelength relation and com-
parisons with experimental QSTT wavelength data have been made for five metallic materials. These
collected comparisons are listed in Table 2. The computed values of Vp via Eq. (1) with experimental 4 data



4232 J.P. Billingsley | International Journal of Solids and Structures 38 (2001) 42214234

as input are close to, or bracket, Vyc (moving clamp velocity) that is a measure of the velocity of individual
atoms in the system. This reasonably good agreement provides a plausible explanation for the long
wavelengths experimentally observed from QSTT strain data via the speckle holography technique.

In addition, quantitative exploratory computations with the quantum related running wave relation (Eq.
(3)) for a particle (atom) in a one-dimensional box (line segment) have been compared to creep test results
for a polycrystalline aluminum specimen. These comparative results are presented in Table 3. For four of
the six experiments (where ¢ was varied), it was shown that, with judiciously selected wavelength input via
Eq. (11), then Eqgs. (3) and (12) provide reasonably good predictions for the frequency, v (or 6) and Vpy,
respectively.

In general, for both the QSTT and creep test speckle holography results, the de Broglie-Fitzgerald
quantum related PMW concept appears to provide an answer, or at least provides a clue, to previously
inexplicable behavior such as:

(a) The unusually long strain wavelengths.
(b) The magnitude of the wave propagation velocity, particularly for the creep tests.

This is considered to be correct even though the analytical/experimental result comparisons were not
always one-to-one or otherwise consistent.

Some reasons for this disagreement are as follows:

(a) The application of Egs. (1) and (3) to the observed strain (e, &) and rotation (w.) data instead of
particle velocity (U, or V;) data is, of course, questionable. However, explicit data for U, (x-direction) and
V, (y-direction) were not available. Thus, the analysis was applied to the strain/rotation data with the
implicit assumption that the particle velocity wavelengths were somewhat similar.

(b) &, and w. wavelength data were employed because ¢, data were not always available. ¢,, wavelength
data would have been preferable since only u (displacement in the x-direction) is involved. The questionable
use of Egs. (1) and (3) is somewhat more justifiable when applied to ¢,, data than when applied to ¢,, and w,
data. This is because ¢, does not explicitly involve the transverse displacement (y-direction) and the
measured wavelengths in the cited references were generally in the x-direction where via Vyc and/or &, some
estimate of U, could be made.

Certain experiments (1-4) of the creep test (Danilov et al., 1991c) seemed to indicate that the Vpy
magnitude was consistent with Eq. (12) from the running wave analysis. However, in these cases, the es-
timated U, = L - £ (experiment) results did not compare very well with the de Broglie velocity (Eq. (1) or Eq.
(13)). Perhaps this is related to the discussion in reason (b).

The running wave analysis did not provide consistent results between A, 0 (or v), and Vpy for the QSTT
ferrosilicon and iron—nickel-boron alloy data where a check with experimental data was possible. On the
other hand, the de Broglie velocity (Eq. (1)) with the QSTT experimental strain/rotation wavelength input,
compared very well with Vyc (a yardstick of the particle velocity, U,, magnitude).

So some creep test data for aluminum were amenable to the running wave analysis but the QSTT data
for two alloys (ferrosilicon and iron—nickel-boron) were not. This could be caused by inherent differences
between QSTT and creep testing load application and other reasons (noted previously) as well.

The documented agreement between the PMW concept analysis results and the available experimental
strain/rotation wavelength data may be fortuitous. However, it should be sufficient to motivate further
experimental/theoretical work to verify, clarify, or refute this quantum related PMW application to ex-
ceptionally slow moving (quasi-static) test data. Some recommendations for additional work are contained
in the following section.

The QSTT and creep test speckle holography strain wave data are a basic and, consequently, a very
important contribution to the plasticity literature. Most of the interpretive analysis and discussion of the
QSTT/creep speckle holography strain wave data by the Soviet investigators (Panin, 1990; Zuev et al., 1995;
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Zuev and Danilov, 1997a,b) has been from a continuous media approach that attempts to bridge the
microscopic, mesoscopic, and macroscopic regimes of deformation.

Section 2.2 of the present document cites three examples where quantum related PMW effects on the
discrete particle (atom) level have shown up unexpectedly in macroscopic testing. The quantum PMW effect
is rather subtle and is not an overpowering influence in the vast majority of macroscopic structural testing.
Consequently, it is unexpected and, initially, anomalous when it occurs.

In addition, PMW influences are usually difficult to document conclusively because of experimental data
deficiencies (Billingsley, 1998a). However, based upon the rather limited quantitative comparisons in the
present document, the PMW effect is strongly suggested as the root cause of, at least, the otherwise in-
explicable long wavelengths exhibited by the cited QSTT/creep test strain data.

5. Recommendations

Some suggestions for additional work are implicitly contained in the previous sections of this document.
Some of these tasks could be accomplished more readily by the cited original Soviet investigators if the
initial raw speckle holography data are still available. These tasks are collected here and explicitly delin-
eated.

1. Compute U, and ¥, (particle or mass velocities) from the raw displacement (x and v) data, if possible.
If these U, ¥, data exhibit oscillatory wave behavior (with a wavelength) then the de Broglie relation can be
applied without the caveats necessary when strain data are analyzed. Thus every effort should be made to
acquire these particle velocity (U, and V;) data.

2. g, strain wavelength information (not shown or published in some of the cited references) should be
examined via the PMW concept as was done for &,, and w, data in the present document. As noted in
Section 4, application of the PMW analysis to &, data is much more justifiable than it is when applied to &,,
and w, data.

3. All of the QSTT data documented in the cited references were taken with the moving clamp velocity,
Vme, equal to (1.6 +0.1)107¢ ms~!. It is recommended that QSTT speckle holography data be acquired, if
possible, where Vyc is at least a factor of 2 or 3 larger or smaller than 1.6 x 10~® ms™'. A factor of 10 or an
order of magnitude change in Vyc would be preferable. This would allow a good check on the PMW
application to be made since the strain wavelengths should vary in accordance with Eq. (1) when written as

h
4= . 1

4. An analysis of the creep testing procedure should be performed to ascertain if the gross overall particle
or mass velocity is given by Eq. (10) which is: U, =L -é. U, as given by Eq. (10) did not compare very
favorably with Vp as given by Eq. (1) or Eq. (13) in the running wave analysis (Eq. (3)) of the creep data in
Danilov et al. (1991¢).

5. Some additional exploratory computations, via the PMW concept, should be performed on the data
analyzed in the present document. This would specifically involve the two- and three-dimensional forms of
the one-dimensional running wave relation (Eq. (3)). This would allow the lateral (width and/or thickness)
dimensions of the specimen to be taken into account because strain wavelengths are influenced by specimen
width.

6. Some consideration should be given to: What is the ““proper” specimen length since it may extend past
the fixed and moving clamp locations (working length) insofar as running waves are concerned? These
uncertain end (or length) boundary conditions may be one reason the exploratory running wave compu-
tations (Eq. (3)) for the QSTT data were not successful (Sections 3.2 and 3.3).
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